Grundwissen

Chemie 9 NTG

Gymnasium Höhenkirchen-Siegertsbrunn

Hinweise zum Grundwissen

Grundlage für das Grundwissen ist der Lehrplan, der im Internet unter folgendem Link abrufbar ist: https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/9/chemie/ch-ntg

Zum Schließen von Lücken empfiehlt sich auch der Blick in das Schulbuch. Am Anfang jedes Themenblocks sind hier die Bücherseiten angegeben, auf denen die Inhalte zusammengefasst werden.

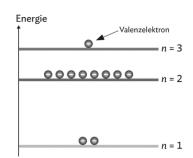
In dieser Zusammenstellung sind konkrete Aufgabenstellungen formuliert, die das Grundwissen abprüfen. Die genannten Beispiele sind lediglich als solche zu verstehen, d. h. die dahinter stehenden Kompetenzen (z. B. das Aufstellen einer Reaktionsgleichung) müssen auch an anderen Beispielen gezeigt werden können.

Stand:Juli 2023

Themenblock 1: Atombau und gekürztes Periodensystem

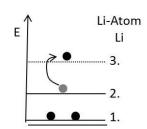
Überblicksseiten im Schulbuch

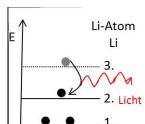
➤ Buch Chemie Bayern 9 NTG (C.C. Buchner): S.42/43



Skizziere das <u>Energiestufenmodell</u> und

gib die Elektronenkonfiguration an.


Bsp.: Natrium-Atom



Elektronenkonfiguration: 1228 31

Erkläre das <u>Prinzip der Flammenfärbung</u> mit Hilfe des Energiestufenmodells.

Die Elektronen der Atomhülle nehmen durch das Erhitzen Energie auf, man sagt: sie werden "angeregt", d.h. sie besetzen eine höhere Energiestufe. Die Energie wird in Form von Lichtenergie abgegeben, wenn das Elektron in seinen ursprünglichen Grundzustand zurückkehrt.

unterschiedliche Energie → unterschiedliche Wellenlänge → unterschiedliche Flammenfarbe

Gib die Anzahl der <u>Protonen</u>, <u>Neutronen</u> und <u>Elektronen</u> in den folgenden Teilchen **an**.

Bsp.: 16O 23Na+ 35Cl-

Sauerstoff-Atom: 8 p⁺, 8 n⁰ und 8 e⁻

Natrium-lon: 11 p⁺, 12 n⁰ und 10 e⁻

• Chlorid-Ion: 17 p⁺, 18 n⁰ und 18 e⁻

Definiere den Begriff "lonisierungsenergie" und **beschreibe** Tendenzen im Periodensystem. Unter der **lonisierungsenergie** versteht man die Energie, die aufgewendet werden muss, um ein Elektron aus der Atomhülle zu entfernen.

Der Betrag der lonisierungsenergie hängt von der Anziehungskraft zwischen Atomkern und Elektron ab.

Die benötigte Ionisierungsenergie ...

- ... steigt innerhalb einer Periode, weil die Kernladungszahl zunimmt.
- sinkt innerhalb einer Hauptgruppe von oben nach unten, weil der Abstand zwischen Kern und Elektron größer wird.

	Die Elemente sind nach aufsteigender Protonenzahl (Ordnungszahl, Kernladungszahl) geordnet.	
Erkläre die Anordnung der Elemente im PSE.	Elemente mit ähnlichen chemischen Eigenschaften befinden sich in der gleichen Hauptgruppe. Sie besitzen die gleiche Anzahl an Valenzelektronen.	
	Elemente der gleichen Periode besitzen die gleiche Anzahl von (besetzten) Energiestufen.	
	Atome tendieren dazu, die stabile Edelgaskonfiguration (= Elektronenkonfiguration eines Edelgas-Atoms, d.h. eine vollbesetzte höchste Energiestufe → Elektronenoktett bzwduplett) zu erreichen.	
Erläutere die Edelgasregel.	Möglichkeit 1: Unter ausreichend viel Energiezufuhr werden Elektro- nen abgegeben (Bildung eines Kations)	
	Möglichkeit 2: Aufnahme von Elektronen (Bildung eines Anions)	
	Ob und wie viele Elektronen ein Atom abgibt oder aufnimmt, hängt von der Stellung im Periodensystem ab. Die Ionenladungszahl von Atom-Ionen leitet sich von der Zahl an Elektronen ab, die das Ion mehr oder weniger besitzt als das entsprechende ungeladene Atom.	
Gib die Formelschreibweise für die stabilen lonen folgender Atome an. Bsp.: Na, O, Al, F	Bsp. Na+, O ²⁻ , Al ³⁺ , F-	
Stelle die Bildung von Natrium- und Chlorid-Ionen unter Verwendung von Energiestufenmodellen dar.	Natrium-Atom Energie $n = 3$ $n = 3$ $n = 3$ Natrium-Kation Energie $n = 3$ $n = 2$ Ionisierung Chlor-Atom Energie $n = 3$ $n = 1$ Chlorid-Anion Energie $n = 3$ $n = 1$ Chlorid-Anion Energie $n = 3$	
Definiere den Begriff <u>Isotop.</u>	Elemente bestehen aus Atomen gleicher Protonenzahl. Isotope sind Atome des gleichen Elements mit unterschiedlicher Neutronenzahl. Die Anzahl natürlicher Isotope ist atomartspezifisch.	

Themenblock 2: Donator-Akzeptor-Konzept - Elektronenübergänge

Überblicksseiten im Schulbuch

Buch Chemie Bayern 9 NTG (C.C. Buchner): S. 80/81

➤ Buch Chemie Bayern 10 NTG (C.C. Buchner): S.18/19

Erkläre das Grundprinzip von Redoxreaktionen		
am Beispiel einfacher Salzbildungsreaktionen		
und formuliere die Teilgleichungen sowie die		
Gesamtgleichung.		

Bsp.: Bildung von Magnesiumchlorid

Redoxreaktionen sind Reaktion mit **Elektronenübergängen**, bei denen **Reduktionen** (= Elektronenaufnahmen) kombiniert mit **Oxidationen** (= Elektronenabgaben) ablaufen. Bei der Salzbildung werden Atome zu Ionen. Dadurch erreichen sie Edelgaskonfiguration.

Oxidation: Mg \rightarrow Mg²⁺ + 2e-(Elektronenabgabe)

Reduktion: $Cl_2 + 2e \rightarrow 2 Cl$ (Elektronenaufnahme)

Redoxreaktion: $Mg + Cl_2 \rightarrow MgCl_2$

Definiere die Begriffe <u>Oxidation/Reduktion</u> und "<u>Oxidationsmittel</u>" und "<u>Reduktionsmittel</u>" und **ordne** sie bei einer Redoxreaktion zu.

Bsp.: $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$

Oxidationsmittel sind **Elektronenakzeptoren** und werden selbst reduziert.

Reduktionsmittel sind **Elektronendonatoren** und werden selbst oxidiert.

Bsp.: $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$

Na: Elektronendonator, Reduktionsmittel Cl₂: Elektronenakzeptor, Oxidationsmittel

Definiere den Begriff Gitterenergie.

Die Energie, die frei wird, wenn sich Anionen und Kationen zu einem regelmäßigen lonengitter anordnen, nennt man Gitterenergie.

Im Gitter ziehen sich die Ionen gegenseitig an.

Definiere den Begriff "<u>Elektrolyse</u>" und **formuliere** die elektrochemischen Vorgänge am Pluspol und am Minuspol als Teilgleichungen und die Gesamtgleichung.

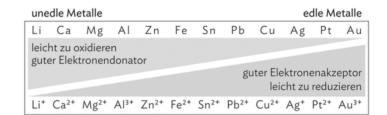
Bsp.: Elektrolyse von Al₂O₃

Bei einer **Elektrolyse** wird durch Zufuhr **elektrischer Energie** eine nicht spontan ablaufende Redoxreaktion erzwungen.

Minuspol: $Al^{3+} + 3e^{-} \rightarrow Al / \cdot 4$ (*Reduktion*)

Pluspol: $2 O^{2-} \rightarrow O_2 + 4e^- / 3$ (Oxidation)

Gesamtgleichung:


 $4 \text{ Al}^{3+} + 6 \text{ O}^{2-} \rightarrow 4 \text{ Al} + 3 \text{ O}_2$

Erläutere die Anordnung der Metalle in der Redoxreihe.

Metalle reagieren nur mit Metallsalzlösungen, wenn das eingetauchte Metall **unedler** ist als das Metall, dessen Ionen die Metallsalzlösung enthält.

Je **unedler** ein Metall ist, desto leichter lassen sich seine Atome oxidieren.

Je **edler** ein Metall ist, desto leichter lassen sich seine Kationen reduzieren.

Beschreibe das Grundprinzip einer <u>Batterie</u> und **nenne** ein Beispiel.

- elektrochemische Stromerzeugung als freiwillige Redoxreaktion → Redoxreaktionen liefern elektrische Energie
- Umwandlung von chemischer Energie in elektrische Energie
- räumliche Trennung von Oxidation und Reduktion führt zu Stromfluss
- Bsp.: Daniell-Element, Zink-lod-Batterie

Themenblock 3: Molekulare Verbindungen

Überblicksseiten im Schulbuch

- ➤ Buch Chemie Bayern 9 NTG (C.C. Buchner): S.128/129
- ➤ Buch Chemie Bayern 10 NTG (C.C. Buchner): S.20/21

Definiere den Begriff <u>Orbital.</u>	Orbitale sind Räume in denen sich die Elektronen eines Atoms oder Moleküls zu 99%-iger Wahrscheinlichkeit aufhalten.		
	Jedes Orbital kann von maximal zwei Elektronen besetzt werden. Orbitale lassen sich vereinfacht als Elektronenwolke darstellen.		
Erkläre das Zustandekommen einer Elektronenpaarbindung mit Hilfe eines einfachen <u>Orbitalmodells.</u>	Zwei einfach besetzte Atomorbitale (z. B. von Wasserstoffatomen) überlappen und bilden zusammen ein bindendes Molekülorbital, dass mit zwei Elektronen besetzt ist.		
	Durch die größere Aufenthaltswahrscheinlichkeit der Bindungselektronen zwischen den Atomkernen kommt es zu elektrostatischen Anziehungskräften, welche die Atome in Molekülen aneinanderbinden.		
Gib die Valenzstrichschreibweise für ein Chloratom an und erkläre daran das Zustandekommen der Elektronenpaarbindung.	Zwei Atome bilden ein gemeinsames Elektronenpaar aus, indem jeder der beiden je ein Valenzelektron beisteuert.		
	Durch Ausbildung dieser Elektronenpaarbindungen erreicht jedes Atom im Molekül eine energetisch günstige Edelgaskonfiguration .		
	Bsp.: Chlor-Atome besitzen sieben Valenzelektronen. Somit fehlt einem Chlor-Atom ein Elektron, um die Edelgaskonfiguration zu erreichen. Durch die Bildung eines bindenden Elektronenpaares können jedem Chlor-Atom formal acht Valenzelektronen zugerechnet werden.		
	$ \underline{\overline{Cl}} \cdot + \cdot \underline{\overline{Cl}} \longrightarrow \underline{\overline{Cl}} - \underline{\overline{Cl}} $		
Formuliere wichtige Regeln des Elektronenpaarabstoßungsmodells (EPA-Modell).	 Die negativ geladenen Elektronenpaare stoßen sich gegenseitig ab. Sie ordnen sich so um das Zentralatom an, dass sie möglichst weit voneinander entfernt sind. Freie / Nicht-bindende Elektronenpaare stoßen benachbarte Elektronenpaare etwas stärker ab. Mehrfachbindungen werden bei der Ableitung der Molekülgestalt wie Einfachbindungen behandelt. 		

Zeichne die räumlich korrekten Struk-
turformeln und benenne die räumliche
Struktur.

Bsp.: CH₄, NH₃, H₂O, CO₂, BH₃, CH₂O

tetraedrisch 109,5°

trigonal pyramidal 107°

gewinkelt 104, 5°

linear trigonal planar 120° 180°

Formuliere alle mesomeren Grenzstrukturformeln des Nitrat-lons (NO₃-) und erkläre die Begriffe Mesomerie und Formalladung.

Mesomerie: Kann die tatsächliche Elektronenverteilung nicht durch eine einzige Valenzstrichformel, sondern nur mithilfe mehrerer Grenzformeln annähernd dargestellt werden, spricht man von Mesomerie.

Formalladung: Erreicht ein Atom in einem Molekül zwar Edelgaskonfiguration, hat aber dadurch mehr oder weniger Valenzelektronen, als es laut PSE eigentlich haben müsste, besitzt es eine Formalladung.

Stelle ein Propan-Molekül, ein Pop-1-en-Molekül und Prop-1-in-Molekül jeweils in Form einer Strukturformel, einer Halbstrukturformel und einer Skelettformel dar.

Propan	Prop-1-en	Prop-1-in
H H H H-C-C-C-H H H H	H H H	H H—C—C≡C—H H
H ₃ C-CH ₂ -CH ₃	H ₂ C=CH-CH ₃	НС≡С−СН₃
<u></u>		

Benenne folgendes Molekül und ordne es begründet einer Verbindungsklasse zu.

Bsp.:

Benennung: 2-Methylbut-1-en

Verbindungsklasse: Alkene

Kennzeichen: Doppelbindung

	Konstitutionsisomere haben die gleiche Molekülformel , unterscheiden sich jedoch hinsichtlich der Verknüpfung der Atome im Molekül.		
Definiere den Begriff Konstitutionsiso- merie und gib ein Konstitutionsisomer zu Butan an.	Butan 2-Methylpropan		
	C ₄ H ₁₀ C ₄ H ₁₀		
	CH₃		
	H ₃ C-CH ₂ -CH ₂ -CH ₃ H ₃ C-CH-CH ₃		
	E/Z-Isomere unterscheiden sich nur in der Anordnung der Gruppen um eine Doppelbindung , da diese <u>nicht</u> frei drehbar ist.		
	Stehen die gleichen (oder vergleichbare) Gruppen auf derselben Seite, liegt das Z-Isomer vor ("Zusammen").		
Erkläre den Begriff <u>E/Z-Isomerie</u> .	H $C = C'$ H_3C CH_3 $T = C(7) Put 2 on$		
	z.B. (Z)-But-2-en		
	Stehen die gleichen (oder vergleichbare) Gruppen auf der entgegengesetzten Seite, liegt das E-Isomer vor ("Entgegen")		
	C = C		
	H_3C H		
	z.B. (E)-But-2-en		

Themenblock 4: Wechselwirkungskonzept

Überblicksseiten im Schulbuch

- ➤ Buch Chemie Bayern 9 NTG (C.C. Buchner): S.192/193
- ➤ Buch Chemie Bayern 10 NTG (C.C. Buchner): S.22/23

Definiere den Begriff "<u>Elektronegativität"</u> und gib Tendenzen im Periodensystem an.

Die Elektronegativität (EN) dient als Maß für die Stärke eines Atoms, Bindungselektronen in einer Elektronenpaarbindung an sich zu ziehen.

Tendenzen im PSE:

- Zunahme innerhalb einer Periode
- Abnahme mit steigender Anzahl an besetzten Energiestufen

Begründe mit Hilfe der Elektronegativität, ob eine <u>polare oder eine unpolare</u> <u>Elektronenpaarbindung</u> vorliegt, und **kennzeichne** auftretende Partialladungen bei der Strukturformel.

Bsp.: O₂, HCl

Unpolare oder	Die verbundenen Atome teilen sich das bin-
sehr schwach	dende Elektronenpaar. Der Schwerpunkt der
polare	Ladung liegt genau (unpolar) bzw. in etwa
Elektronenpaar-	(schwach polar) zwischen den Atomkernen.
bindung	
Δ EN < 0,4	
Polare	Die bindenden Elektronen der verbundenen
Polare Elektronen-	Die bindenden Elektronen der verbundenen Atome werden vom elektronegativeren Partner
Elektronen-	Atome werden vom elektronegativeren Partner
Elektronen- paarbindung	Atome werden vom elektronegativeren Partner

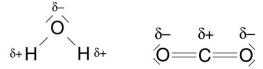
Bsp.:

O₂-Molekül: unpolare Atombindung, da ∆EN = 0

HCl-Molekül: polare Atombindungen, da ∆EN = 0,96

→ Der Bindungspartner mit der höheren Elektronegativität erhält eine negative Partialladung (δ -), der andere eine positive (δ +).

$$\delta$$
+ δ -
H–CI|


Erkläre an den räumlich korrekten Strukturformeln des Wassermoleküls und des Kohlenstoffdioxidmoleküls den Unterschied zwischen

einer "polaren Elektronenpaarbindung" (Bindungspolarität) und

einem "<u>permanenten Dipol</u>" (Molekülpolarität).

Bindungspolarität

Beide Moleküle haben **polare Elektronenpaarbindungen**; es liegen **Partialladungen** vor. → **Bindungspolarität**

Molekülpolarität

H₂O: asymmetrische Ladungsverteilung (d.h. die Ladungsschwerpunkte der gegensätzlichen Partialladungen fallen <u>nicht</u> zusammen.) Das Wasser-Molekül ist ein **permanenter Dipol**.

CO₂: symmetrische Ladungsverteilung. Die Ladungsverschiebungen heben sich in ihrer Wirkung auf. Das Kohlenstoffdioxid-Molekül ist trotz polarer Atombindungen **kein Dipol**.

Vergleiche die zwischenmolekularen Wechselwirkungen bei molekular gebauten Stoffen und nenne Beispiele für Moleküle, zwischen denen diese Wechselwirkungen auftreten.	LONDON- Dispersions- wechselwir- kungen	Elektrostatische Anziehung zwischen spontanen und induzierten Dipolen, die mit steigender Berührungsoberfläche zu Nachbarmolekülen zunehmen (→ bei unpolaren Molekülen die einzige WW!).	Br ₂ , Cl ₂ , H ₂ , Kohlenwasserstoffe wie Methan CH ₄ , Propan C ₃ H ₈ , usw Prinzipiell aber zwischen allen Molekülen!
	Dipol-Dipol- Wechselwir- kungen	Elektrostatische Anziehung zwischen permanenten Dipo- len	H ₂ S, SF ₂
	Wasserstoff- brücken	Elektrostatische Anziehung zwischen einem stark elektro- negativen Atom (F, O, N) und einem positiv polarisierten Wasserstoffatom	H ₂ O, HF, NH ₃
Beschreibe den Einfluss von zwi-	Je stärker die	zwischenmolekularen Wed	: hselwirkungen sind,

Beschreibe den Einfluss von zwischenmolekularen Wechselwirkungen auf die <u>Siedetemperatur</u> von Stoffen (allgemein).

Ordne die Stoffe nach steigender Siedetemperatur und **begründe** mit Hilfe der Teilchenebene deine Anordnung.

Bsp.: Ammoniak, Natriumchlorid, Propan. Wasser

Je stärker die **zwischenmolekularen Wechselwirkungen** sind, desto höher sind die Schmelz- und Siedetemperaturen der Stoffe, da mehr Energie zum Überwinden der Wechselwirkungen zwischen den Teilchen (nicht zur Trennung von Bindungen!) benötigt wird.

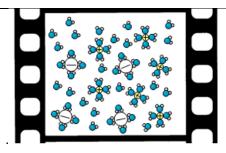
Es müssen also die auftretenden WW betrachtet werden, um die Stoffe nach den Siedepunkten zu ordnen:

7	\ \	7

Stoff Zwischenmolekulare Wechselwirkung bzw. Bindungstyp	
Propan	nur LONDON-Dispersions-WW
Ammoniak	Wasserstoffbrücke
Wasser	mehrere Wasserstoffbrücken
Natriumchlorid	lonenbindung

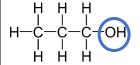
Beschreibe eine allgemeine Regel zur Löslichkeit von Stoffen und **gib** ein passendes Lösemittel für hydrophile, lipophile und amphiphile Stoffe **an.**

Die Löslichkeit eines Stoffes in einem Lösemittel hängt von den möglichen Wechselwirkungen zwischen den unterschiedlichen Molekülen ab. Es gilt: "Ähnliches löst sich in Ähnlichem!"


→ Polare Stoffe (aufgebaut aus Dipol-Molekülen) und Salze lösen sich in polaren Stoffen. Unpolare Stoffe (aufgebaut aus Nicht-Dipol-Molekülen) lösen sich in unpolaren Stoffen.

Hydrophile Stoffe lösen sich besonders gut in Wasser, **lipophile** Stoffe in Benzin, Fetten und Ölen.

Amphiphile Stoffe können mit beiden Lösemitteltypen gemischt werden.


Ein Salz wird in Wasser gelöst. **Skizziere** die entstandene <u>Lösung auf</u>

<u>Teilchenebene</u> und **erkläre** die Anordnung der Wassermoleküle.

Es bildet sich eine **Hydrathülle** um die Ionen. Zwischen Wassermolekülen und Ionen wirken dabei **Ion-Dipol-Wechselwirkungen.** Wassermoleküle lagern sich mit dem negativ geladenen Sauerstoffatom (negative Partialladung) an die positiv geladenen Kationen und andersherum. Gegensätzliche (Teil-) Ladungen ziehen sich an! Die Hydratation setzt Energie frei. Ordne folgende Moleküle einer <u>Verbindungsklasse</u> zu, benenne sie und markiere und benenne die <u>funktionelle Gruppe</u>.

Bsp.:

Es handelt sich um ein **Alkohol**-Molekül (Propan-1-ol). Die funktionelle Gruppe ist die **Hydroxygruppe**.

Es handelt sich um ein **Aldehyd**-Molekül (Butanal). Die funktionelle Gruppe ist die **Aldehydgruppe**.

Es handelt sich um ein **Keton-**Molekül (Butanon). Die funktionelle Gruppe ist die **Ketogruppe**.

$$H - C - C = \overline{\underline{O}} - H$$

Es handelt sich um ein **Carbonsäure-**Molekül (Ethansäure). Die funktionelle Gruppe ist die **Carboxygruppe**.

In der Aldehyd-, Keto- und Carboxygruppe taucht die **Carbonylgruppe (C=O)** als gemeinsamer Bestandteil auf.

Zeichne die <u>Strukturformel</u> oder die <u>Skelettformel</u> von folgenden Molekülen.

Bsp.

4-Hydroxybutansäure
But-2-enal
Propan-1,2,3-triol
3-Hydroxybutan-2-on
3-Ethyl-2-hydroxy-4-methylpentansäure

Hinweis: Es gelten folgende Prioritäten:

Carboxy > Carbonyl > Hydroxy > Doppelbindung > Dreifachbindung > Einfachbindung

Die Gruppen mit den niedrigeren Prioritäten werden als Substituenten gesehen und mit einer Positionsnummer versehen. Bsp.: